If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-69y-134=0
a = 9; b = -69; c = -134;
Δ = b2-4ac
Δ = -692-4·9·(-134)
Δ = 9585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9585}=\sqrt{9*1065}=\sqrt{9}*\sqrt{1065}=3\sqrt{1065}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-69)-3\sqrt{1065}}{2*9}=\frac{69-3\sqrt{1065}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-69)+3\sqrt{1065}}{2*9}=\frac{69+3\sqrt{1065}}{18} $
| 1901867078(4.2062a)+0.000=4a+(14/3.5-3) | | 9y-69y-134=0 | | 1901867078(4.2062a)+0.000=4a+1 | | -10s+20=-39 | | 1901867078(4.2062a)=4a+5 | | 1901867078(a)+4.07206630475=4a+5 | | 1901867078(4.2062a)+4.07206630475=4a+2 | | 1901867078(4a)+4.07206630475=4a+5 | | -10s-20=-39 | | 1901867078(4.2062a)+4.07206630475=4a+5 | | 1902867078(4.2062a)+4.07206630475=4a+5 | | 1905867078(4.2062a)+4.07206630475=4a+5 | | 1899867078(4.2062a)+4.07206630475=4a+5 | | 1898867078(4.2062a)+4.07206630475=4a+5 | | 1897867078(4.2062a)+4.07206630475=4a+5 | | 1900867078(4.2062a)+4.07206630475=4a+5 | | 1910867078(4.2062a)+4.07206630475=4a+5 | | 5x-5=7x+ | | 1920867078(4.2062a)+4.07206630475=4a+5 | | 1890867078(4.2062a)+4.07206630475=4a+5 | | 8s+18=42 | | 1960867078(4.2062a)+4.07206630475=4a+5 | | 1460867078(4.2062a)+4.07206630475=4a+5 | | 12l+36=144 | | 9y^2-69y-34=0 | | 10u+30=50 | | 7608670789(4.2062a)+4.07206630475=4a+5 | | 3q-30=9 | | 2e+6=12 | | 5(4.0062a)+4.07206630475=4a+5 | | 70000000(4.0002a)+4.0005=4a+5 | | 5(4.0002a)+4.0005=4a+5 |